Rotations about intrinsic axes
Rotations about extrinsic axes

Euler Angles (Z-Y-Z)

The Z-Y-Z Euler angles describe the orientation of a rigid body using three independent parameters. The sequence of rotations is as follows:

  1. Rotate by angle $\alpha$ about the body $Z$ axis.
  2. Rotate by angle $\beta$ about the new body $Y$ axis (line of nodes).
  3. Rotate by angle $\gamma$ about the new body $Z$ axis.

Rotation Matrix

The total rotation matrix $R$ is the product of the individual matrices:

$$ R = R_z(\gamma) \, R_y(\beta) \, R_z(\alpha) $$

Where the individual matrices are defined as:

$$ R_z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad R_y(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} $$

(You can edit this content later by searching for the "Info Panel" section in the HTML file.)

Rotation Settings
Max Alpha (First Z)
deg
Max Beta (Y)
deg
Max Gamma (Last Z)
deg
Object Shape
Frame 0
α (Alpha) 0.00°
β (Beta) 0.00°
γ (Gamma) 0.00°